Initiating nucleotide identity determines efficiency of RNA synthesis from 6S RNA templates in Bacillus subtilis but not Escherichia coli

نویسندگان

  • Ignacio J. Cabrera-Ostertag
  • Amy T. Cavanagh
  • Karen M. Wassarman
چکیده

The 6S RNA is a non-coding small RNA that binds within the active site of housekeeping forms of RNA polymerases (e.g. Eσ(70) in Escherichia coli, Eσ(A) in Bacillus subtilis) and regulates transcription. Efficient release of RNA polymerase from 6S RNA regulation during outgrowth from stationary phase is dependent on use of 6S RNA as a template to generate a product RNA (pRNA). Interestingly, B. subtilis has two 6S RNAs, 6S-1 and 6S-2, but only 6S-1 RNA appears to be used efficiently as a template for pRNA synthesis during outgrowth. Here, we demonstrate that the identity of the initiating nucleotide is particularly important for the B. subtilis RNA polymerase to use RNA templates. Specifically, initiation with guanosine triphosphate (GTP) is required for efficient pRNA synthesis, providing mechanistic insight into why 6S-2 RNA does not support robust pRNA synthesis as it initiates with adenosine triphosphate (ATP). Intriguingly, E. coli RNA polymerase does not have a strong preference for initiating nucleotide identity. These observations highlight an important difference in biochemical properties of B. subtilis and E. coli RNA polymerases, specifically in their ability to use RNA templates efficiently, which also may reflect the differences in GTP and ATP metabolism in these two organisms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of 6S RNA by pRNA synthesis is required for efficient recovery from stationary phase in E. coli and B. subtilis

6S RNAs function through interaction with housekeeping forms of RNA polymerase holoenzyme (Eσ(70) in Escherichia coli, Eσ(A) in Bacillus subtilis). Escherichia coli 6S RNA accumulates to high levels during stationary phase, and has been shown to be released from Eσ(70) during exit from stationary phase by a process in which 6S RNA serves as a template for Eσ(70) to generate product RNAs (pRNAs)...

متن کامل

An alternative strategy for bacterial ribosome synthesis: Bacillus subtilis rRNA transcription regulation.

As an approach to the study of rRNA synthesis in Gram-positive bacteria, we characterized the regulation of the Bacillus subtilis rrnB and rrnO rRNA promoters. We conclude that B. subtilis and Escherichia coli use different strategies to control rRNA synthesis. In contrast to E. coli, it appears that the initiating NTP for transcription from B. subtilis rRNA promoters is GTP, promoter strength ...

متن کامل

Phenotypic characterization and complementation analysis of Bacillus subtilis 6S RNA single and double deletion mutants.

6S RNA, a global regulator of transcription in bacteria, binds to housekeeping RNA polymerase (RNAP) holoenzymes to competitively inhibit transcription from DNA promoters. Bacillus subtilis encodes two 6S RNA homologs whose differential functions are as yet unclear. We constructed derivative strains of B. subtilis PY79 lacking 6S-1 RNA (ΔbsrA), 6S-2 RNA (ΔbsrB) or both (ΔbsrAB) to study the phy...

متن کامل

6S-1 RNA function leads to a delay in sporulation in Bacillus subtilis.

We have discovered that 6S-1 RNA (encoded by bsrA) is important for appropriate timing of sporulation in Bacillus subtilis in that cells lacking 6S-1 RNA sporulate earlier than wild-type cells. The time to generate a mature spore once the decision to sporulate has been made is unaffected by 6S-1 RNA, and, therefore, we propose that it is the timing of onset of sporulation that is altered. Inter...

متن کامل

How Changes in Anti-SD Sequences Would Affect SD Sequences in Escherichia coli and Bacillus subtilis

The 3' end of the small ribosomal RNAs (ssu rRNA) in bacteria is directly involved in the selection and binding of mRNA transcripts during translation initiation via well-documented interactions between a Shine-Dalgarno (SD) sequence located upstream of the initiation codon and an anti-SD (aSD) sequence at the 3' end of the ssu rRNA. Consequently, the 3' end of ssu rRNA (3'TAIL) is strongly con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2013